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Abstract. Neutron stars with the isovector scalar δ-field are studied in the framework of the relativistic
mean-field (RMF) approach in a pure-nucleon–plus–lepton scheme. The δ-field leads to a larger repulsion
in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses. Both
features are influencing the stability conditions of the neutron stars. Two parametrizations for the effective
nonlinear Lagrangian density are used to calculate the nuclear equation of state (EOS) and the neutron star
properties, and compared to correlated Dirac-Brueckner results. We conclude that in order to reproduce
reasonable nuclear structure and neutron star properties within a RMF approach, a density dependence
of the coupling constants is required.

PACS. 21.65.+f Nuclear matter – 21.30.Fe Forces in hadronic systems and effective interactions – 26.60.+c
Nuclear matter aspects of neutron stars – 97.60.Jd Neutron stars

A relativistic mean-field (RMF) approach to nuclear
matter with the coupling to an isovector scalar field, a vir-
tual a0(980) δ-meson, has been employed to study various
topics related with low-density asymmetric nuclear mat-
ter, including its linear response [1–3], and with heavy-ion
collisions at intermediate energies, where larger density
and momentum regions can be probed [4–6]. In this work
the analysis of the contribution of a δ-field is extended to
study the impact on neutron star properties. We also aim
at a discussion about the effective interaction that is more
appropriate for the description of dense matter, including
the symmetric part. To this end we will make a comparison
between two parametrizations for the isoscalar part of the
interaction and for each of them we will discuss the cases
with and without the inclusion of an isovector scalar field.

A Lagrangian density of the interacting many-particle
system consisting of nucleons, isoscalar (scalar σ, vector
ω), and isovector (scalar δ, vector ρ) mesons is the starting
point of the RMF theory,
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where φ is the φ-meson field, ωµ is the ω-meson field, ~bµ is

ρ-meson field, ~δ is the isovector scalar field of the δ-meson.

Fµν ≡ ∂µων−∂νωµ, ~Gµν ≡ ∂µ~bν−∂ν~bµ, and the U(φ) is a
nonlinear potential of the σ-meson: U(φ) = 1

3
aφ3 + 1

4
bφ4.

The field equations in a mean-field approximation
(MFA) are

(iγµ∂
µ − (M − gσφ− gδτ3δ3)

−gωγ
0ω0 − gργ

0τ3b0)ψ = 0,

m2
σφ + aφ2 + bφ3 = gσ〈ψ̄ψ〉 = gσρs,

m2
ωω0 = gω〈ψ̄γ

0ψ〉 = gωρ,

m2
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0τ3ψ〉 = gρρ3,

m2
δδ3 = gδ〈ψ̄τ3ψ〉 = gδρs3, (2)

where ρ3 = ρp − ρn and ρs3 = ρsp − ρsn, ρ and ρs are the
baryon and the scalar densities, respectively.

Neglecting the derivatives of mesons fields, the energy-
momentum tensor in the MFA is given by
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The equation of state (EOS) for nuclear matter at
T = 0 is given by the diagonal components of the
energy-momentum tensor. The energy density is given by
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and the pressure by the other diagonal components:
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where Ei
? =

√

k2 +Mi
?2
, i = p, n. The nucleon effective

masses are, respectively,

Mp
? =M − gσφ− gδδ3, (6)

and
Mn

? =M − gσφ+ gδδ3. (7)

The nucleon chemical potentials µi are given in terms
of the vector meson mean fields,

µi =
√

k2
Fi

+Mi
?2

+gωω0∓gρb0 (+ proton, − neutron),

(8)
where the Fermi momentum kFi

of the nucleon is related
to its density, kFi

= (3π2ρi)
1/3.

Since we are interested to the effects of the nu-
clear equation of state, we will consider only pure nu-
cleonic (+ lepton) neutron star structures, i.e. without
strangeness bearing baryons and even deconfined quarks,
see the recent nice review [7] and ref. [8]. In particular
we will use two models for the neutron star composition:
pure neutron and β-stable matter. In the latter case we
limit the constituents to be neutrons, protons and elec-
trons. Then the composition is determined by the request
of charge neutrality and β-equilibrium. The (npe−) matter
is indeed the most important β-stable nucleon + lepton
matter at low temperature.

The chemical-potential equilibrium condition for the
(npe−) system can be written as

µe = µn − µp . (9)

The charge neutrality condition is

ρe = ρp = Xpρ , (10)

where Xp = Z/A = ρp/ρ is the proton fraction (asymme-
try parameter α = 1−2Xp), and ρ is the total baryon den-
sity. The electron density ρe in the ultrarelativistic limit
for noninteracting electrons can be denoted as a function
of its chemical potential

ρe =
1

3π2
µ3
e , (11)

Table 1. Parameter sets.

Parameter Set A Set B

NLρ NLρδ NLρ NLρδ

fσ (fm2) 10.32924 10.32924 15.61225 15.61225

fω (fm2) 5.42341 5.42341 10.40068 10.40068

fρ (fm2) 0.94999 3.1500 1.09659 3.08509

fδ (fm2) 0.00 2.500 0.00 2.400

A (fm−1) 0.03302 0.03302 0.00999 0.00999

B −0.00483 −0.00483 −0.002669 −0.002669

Table 2. Saturation properties of nuclear matter.

Parameter sets A B

ρ0 (fm−3) 0.16 0.148

E/A (MeV) −16.0 −16.299

K (MeV) 240.0 271.7

Esym (MeV) 31.3 33.7

M∗/M 0.75 0.60

where µe =
√

k2
Fe

+m2
e. The Xp can be obtained by using

eqs. (8)-(11). The Xp is related to the nuclear symmetry
energy Esym

3π2ρXp − [4Esym(ρ)(1− 2Xp)]
3 = 0. (12)

In the presence of a coupling to an isovector scalar δ-meson
field, the expression for the symmetry energy has a simple
transparent form, see [2,3]:
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F +M?2, and

fi ≡ g2
i /m

2
i with i = ρ, δ. The Esym and the EOS for the

β-stable (npe−) matter at T = 0 can be estimated by using
the obtained values of Xp. Equilibrium properties of the
neutron stars can be finally studied by solving Tolmann-
Oppenheimer-Volkov (TOV) equations [9,10] with the de-
rived nuclear EOS as an input [7].

We will consider two cases for the isovector part of the
interaction: a case with only a ρ-field (NLρ) and another
with both ρ and δ-fields (NLρδ). In the NLρ case the sym-
metry energy at saturation density fixes the fρ coupling.
In the NLρδ the fδ coupling is fixed from Dirac-Brueckner
estimations, i.e. fδ ' 2.5 fm2, and the fρ coupling by sym-
metry energy value at saturation density, see the detailed
discussions in refs. [2,3].

In order to make a comparison, two parameter sets
for the isoscalar part are used. The coupling constants,
fi ≡ g2

i /m
2
i , i = σ, ω, ρ, δ, and the two parameters of the

σ self-interacting terms, A ≡ a/g3
σ and B ≡ b/g4

σ, are re-
ported in table 1. The corresponding properties of nuclear
matter are listed in table 2. The first, Set A, is more suit-
able at high densities where it appears closer to various
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Fig. 1. (a) Scalar and vector potentials vs. the baryon den-
sity; (b) binding energy as a function of the baryon density for
symmetric nuclear matter. See text.

Dirac-Brueckner predictions. In fact, recently this inter-
action has been used with success to describe reaction
observables in RMF transport simulations of relativistic
heavy-ion collisions, where high densities and momenta
are reached [4–6]. The second, Set B, for the isospin-zero
case is taken from the NL3 parametrization [11], obtained
by fitting properties of symmetric nuclear matter at sat-
uration density and of finite nuclei. Then the NLρ case is
exactly like NL3, where the isovector scalar channel is not
included. The NLρδ is obtained, similarly to Set A, fixing
fδ = 2.4 fm2 and requiring Esym(ρ0) = 33.7 MeV. Notice
that Esym(ρ0) = 37.4 MeV in NL3; however this does not
affect the message of the present work.

In ref. [5] it has been shown that the good description
of finite nuclei, even exotic, is kept also when the isovector
scalar channel is included, normally not present in the NL3
Lagrangian.

We first use the two parametrizations to calculate the
scalar and the vector potentials, and the binding energy
E/A for symmetric nuclear matter (α = 0.0) as a func-
tion of baryon density. The results are presented in fig. 1
together with the results from various Dirac-Brueckner-
Hartree-Fock calculations.

The relativistic DBHF approach is a microscopic
model describing a many-body system with correlations,
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Fig. 2. Neutron and proton effective masses vs. the baryon
density for some values of the proton fraction: (a) for Set A
and (b) for Set B. See text.

that has been extensively used to study the nuclear-matter
properties [12–17]. In order to make a comparison with the
RMFT, in fig. 1 we also report different results within the
DBHF approaches, the relativistic Dirac-Brueckner cal-
culations by Brockmann and Machleidt [12], denoted as
DBBM, the Dirac-Brueckner T -matrix calculations [13],
denoted as DBT, and the Dirac-Brueckner results by ter
Haar and Malfliet [14], denoted as DBHM.

From fig. 1(a) we see that the scalar and vector poten-
tials for the isoscalar channels, given by Set B (i.e. the NL3
σω couplings) in low-density regions are consistent with
the correlated Dirac-Brueckner results, while the results
given by Set A are in better agreement in high-density
regions.

The dotted line in fig. 1(b) denotes the EOS of sym-
metric nuclear matter given by Set B, in full overlap with
the solid line given by the NL3 interaction. It shows a
nice agreement with correlated relativistic predictions at
low densities but is clearly too repulsive with increasing
density. At variance fig. 1(b) also shows that, as expected,
the EOS of symmetric nuclear matter given by Set A is
more consistent with that given by Dirac-Brueckner cal-
culations, in particular for the DBT and DBBM estima-
tions, in high-density regions up to about three-four times
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Fig. 3. Symmetry energy vs. the baryon density at T = 0 MeV
for Set A (upper panel) and for Set B (lower panel). In the
insert is the corresponding proton fraction, see text.

normal density. Such a different behavior at high baryon
density, in connection to the large difference in nucleon
effective masses, will strongly influence the neutron star
structure.

Relativistic heavy-ion collisions can provide crucial in-
formation about the EOS of nuclear matter. The inves-
tigation of nuclear EOS at high densities is one of the
driving forces for studying heavy-ion reactions. The au-
thors of ref. [15] use different DBHF approaches to study
the collective flow of heavy-ion collisions. It is shown that
the softer DBT choice is in better agreement with exper-
imental data of relativistic collisions, at least up to a few
A GeV beam energies, where densities up to 2.5ρ0 can be
reached in the interacting zone. In general very accurate
analysis of relativistic-collisions data favor the predictions
of a softer EOS at high densities [18,19]. We remark from
fig. 1(b) that for symmetric matter the DBT is quite close
to our Set-A parametrization, at least up to about 3ρ0.

For the isovector channels one can see from eqs. (6)
and (7) that the presence of the δ-field leads to proton
and neutron effective mass splitting. In fig. 2 we present
the baryon density dependence of n, p effective masses
for different proton fractions for the two parameter sets.
The solid lines in fig. 2 are the nucleon effective mass for
symmetric nuclear matter (Xp = 0.5).
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Fig. 4. Mass of the neutron star as a function of the central
density of the neutron star by Set A and Set B, respectively.

Figure 2(a) shows that the proton and the neutron ef-
fective masses given by Set A decrease slowly with increas-
ing baryon density, at variance with Set B that presents
a much faster decrease, fig. 2(b). This main difference be-
tween the two A and B parametrizations, is actually com-
ing from the isoscalar part. When coupled to the splitting
due to the isovector δ-field it will have large effects on the
n star equilibrium features.

The density dependence of symmetry energy for the
two parameter sets is reported in fig. 3. For both cases we
see a similar behavior of Esym at sub-saturation densities
for NLρ and NLρδ models. With increasing baryon den-
sity ρ, however, the differences arising from the presence
of the δ-meson in the isovector channel become more pro-
nounced for both A and B parametrizations. This is due to
the quenching factor (M?/E?

F)
2 for the attractive δ con-

tribution in eq. (13) in high-density regions, see refs. [2,3].

We note that in spite of the same isovector coupling
constants, at high density Set B gives a larger symmetry
energy. This is related to the larger contribution of the
kinetic term in the r.h.s. of eq. (13) due to the faster de-
crease of the effective nucleon mass. This represents a nice
example of how the isovector part of the nuclear EOS can
be influenced by the isoscalar channels due to the Fermi
correlations.
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Fig. 5. Mass of the neutron star as a function of the radius
of the neutron star for Set A (upper pannel) and Set B (lower
panel), respectively.

In the inserts of fig. 3 we show the corresponding pro-
ton fractions Xp at β-equilibrium, eq. (12). Due to the
stiffer nature of the symmetry energy in the NLρδ cases, in
both parametrizations we see a decrease of the ρUrca, i.e.

of the baryon density corresponding to the valueXp = 1/9
that makes possible a direct Urca process, see [7].

At this point we can calculate the predictions for equi-
librium properties of neutron stars just solving the TOV
equations [9,10]. The main results are presented in figs. 4
and 5.

Figure 4 displays the neutron star mass as a function of
the central density of the star given by the two parameter
sets, for the two compositions, pure neutron and the β-
equilibrium (npe−) matter.

Figures 4(a) and (b) both show that the maximum
masses of the β-equilibrium star are smaller than in the
pure-neutron case due to the presence of a proton fraction
and therefore of a smaller symmetry repulsion. Consis-
tently, the corresponding central densities are larger. A
related effect is that the mass of the (npe−) star, given by
the NLρδ model, decreases more quickly with increasing
density than that given by the NLρ choice, i.e. we have
a lower-density instability onset. This is just because the
introduction of the δ coupling increases the equilibrium

Table 3. Maximum mass, corresponding radius and central
density of the star given by the two parameter sets.

Neutron star Properties Set A Set B

NLρ NLρδ NLρ NLρδ

Pure neutron (Ms/M¯)max 2.24 2.56 2.88 3.12

ρc/ρ0 5.75 4.65 4.12 3.55

R (km) 11.44 12.56 13.70 14.69

(npe−) matter (Ms/M¯)max 2.14 2.30 2.83

ρc/ρ0 6.77 6.49 4.54

R (km) 10.80 11.33 13.25

proton fraction at high baryon densities, see the inserts
in fig. 3.

The larger stiffness of the symmetry energy in the
NLρδ cases, in both parametrizations, can be directly
seen in the fact that the corresponding curves are al-
ways above the ones without the δ coupling. This implies
larger maximum masses and smaller central densities. As
a consequence, we systematically see that the results for
the (npe−) composition in the NLρδ models are approxi-
mately equivalent to the ones for the pure-neutron matter
in NLρ choices.

Figure 4(b) presents a qualitatively new feature of
Set-B results: the lack of solution (maximum mass) in the
β-equilibrium case for the NLρδ model. The fast decrease
of the neutron effective mass, see fig. 2(b), prevents the
chemical-potential equilibrium condition for the (npe−)
matter from being satisfied at densities around 3ρ0.

Figure 5 reports the correlation between neutron star
mass and radius given by the two parameter sets, respec-
tively, for the two cases, pure neutron and (npe−) matter.
Figure 5 shows that the contribution of the δ-field to the
neutron stars in high-density regions is quite remarkable.
In particular, we note that we systematically have larger
masses and radii and lower central densities, as expected
from the larger symmetry pressure.

All the estimated maximum masses and the corre-
sponding central densities and radii of the neutron stars
are reported in table 3.

We note that the difference between the two, A and
B, parametrizations, in the neutron star predictions, is
largely due to the isoscalar structure of the interac-
tions, see fig. 1. The B parametrization is much stiffer
in high-density regions and this leads to differences in the
neutron star masses, radii and central densities. The com-
parison between the results given by the two sets shows
that Set B (i.e. the NL3 forces) can be good at low densi-
ties below saturation density and it has serious problems
at high densities, while Set A is a good choice for the
EOS of nuclear matter in larger-density regions, which
is consistent with what pointed out by refs. [19,20]. In
a sense, all of that just shows that density-dependent
RMF parametrizations are necessary and they should re-
produce the B-type at low densities and A-type at high
densities. This has been already emphasized in the work
of ref. [21]. While results of Density-Dependent (DD)
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parametrizations and of the NL3 forces agree very well be-
low the saturation density, the EOS of DD interactions at
supra-normal densities shows a much softer behavior, sim-
ilar to DBHF calculations and in better agreement with
heavy-ion collision (HIC) data, see also ref. [5].

In any case our calculations show that the δ-field pro-
vides significant contributions to the neutron star struc-
ture for the stiffness of the symmetry energy and the neu-
tron/proton mass splitting in high-density regions. The
proton fraction in the β-equilibrium matter is much larger
than that in the no δ-field case. Moreover, we can see from
fig. 4(b) and fig. 5(b) that we do not have solutions in the
(npe−) case for Set B with NLρδ isovector interaction.
This represents a quite dramatic effect of the splitting of
neutron/proton effective masses at high densities, on top
of the larger nucleon mass decrease of the B parametriza-
tions, see fig. 2. The neutron chemical potential is then not
able to satisfy the β-equilibrium conditions of the (npe−)
matter. The contribution of the δ-field for strongly isospin-
asymmetric dense matter is important and it cannot be
neglected.

With reference to neutron star properties we study
the EOS for dense asymmetric matter in the RMF frame
with two different parameter sets for the Lagrangian
density. Set B is close to the NL3 parametrization which
has been proposed to describe finite nuclei properties.
Since the proton and especially the neutron effective
masses decrease quickly with increasing baryon density,
Set B cannot provide the EOS needed in high-density
regions for the (npe−) star. This means that in general
the B parametrization seems to have serious problems at
high densities, as already remarked from HIC studies [19].
Though the B parametrization can be good for the EOS
at low densities, below and around saturation, it is too
stiff in high-density regions, in particular there is no
solution for the (npe−) case with the δ-field. So Set B is
not suitable for the case of dense matter. We require a
softer EOS at high densities, and indeed the softer Dirac-
Brueckner predictions, in particular the DBT one, are in
better agreement with relativistic-collisions data. Our A
parametrization, including the isovector scalar δ-field, is
quite close to the DBT and it has been shown to lead to
good predictions in transport simulations for heavy-ion
collisions at intermediate energies [4–6]. It appears then
quite appropriate for the nucleonic part of the approach to

neutron star properties. In this respect we note that quite
extended neutron star structure calculations have been
recently performed just using our Set-A Lagrangian [22].

This project is supported by the National Natural Science
Foundation of China under Grant No. 10275002, the INFN of
Italy, and the Major State Basic Research Developing Program
with Grant No. G2000077400.
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